VisuaLinda: A Framework and a System for
Visualizing Parallel Linda Programs

Hideki Koike*

Graduate School of Information Systems
University of Electro-Communications
1-5—1, Chofugaoka, Chofu, Tokyo 182, JAPAN
Tel: +81-424-83-2161
Email: koike@cas.uec.ac.jp

ABSTRACT

This paper describes a framework and a system for vi-
sualizing parallel Linda programs. The system is called
VisuaLinda, which is a Linda server itself as well as
a visualization tool. Since the visualization module is
built-in the Linda server, programmers do not need to
insert/delete additional sentences into/from their client
programs in order to obtain visualization. This frame-
work extremely reduces the programmers’ work in de-
bugging parallel programs and helps prevent the probe
effect, which is a main concern in monitoring paral-
lel programs. Secondly, the VisuaLinda uses three-
dimensional space to display both the relation between
Linda server and clients, and their execution. This
framework allows us to display much larger number of
processes than in 2D, to see two relations simultane-
ously, to improve the visibility of communication lines,
and to see each process’s state as well as an overview of
the execution.

Keywords: Algorithm animation, debugging tool, in-
formation visualization, Linda, parallel programming,
performance tuning, three-dimensional graphics, visual-
ization.

INTRODUCTION

Debugging parallel programs is much more difficult than
debugging sequential programs. The first reason is that
the breakpoint approach used in sequential programs
does not work because many processes run in parallel.
The second reason is that programmers have to worry
about the correctness of each process as well as the cor-
rectness of the communication between processes. The
third reason is that it is often difficult to repeat the bug
because of the non-deterministic behavior of the parallel
programs.

*Current address: 481 Minor Hall, School of Optometry, Uni-
versity of California, Berkeley, CA 94720

Tetsuji Takada

Department of Communications and Systems
University of Electro-Communications
1-5—1, Chofugaoka, Chofu, Tokyo 182, JAPAN
Tel: +81-424-83-2161
E-mail: zetaka@qr.cas.uec.ac.jp

Visualization has been playing an important role for de-
bugging such parallel programs. By visualizing the ex-
ecution pattern of complex programs as a diagram, it
helps programmers to understand the program faster
and more clearly.

Most of the visualization systems developed until now
are for special parallel hardwares such as transputer,
connection machine, and so on. Since they have their
own trace tools, it is easy to obtain trace data includ-
ing the information about the processes’ state and their
execution time.

On the other hand, another parallel computing using
general purpose workstations on local area network is
getting popular and popular. PVM (parallel virtual ma-
chine) is one such example. However, it is more difficult
to visualize this kind of parallel computing because of
the reasons described in the next section.

This paper describes the VisuaLinda, which is a Linda
server itself as well as a visualization tool for parallel
Linda programs. There are two major contributions in
the VisuaLinda system. The first is the build-in design
of a visualization module. Programmers do not have to
insert/delete additional procedures into/from their pro-
grams in order to obtain the visualization. The second is
a use of three-dimensional space. As a result, program-
mers can see both a relation between processes and a
time flow of processes simultaneously.

VISUALIZATION OF PARALLEL PROGRAMS
Visualization Framework

McDowell wrote that visualization approach is an
effective method for debugging parallel programs,
and pointed out the importance of the following
approaches[11]:

e Time-process diagram approach
One axis represents processes and another repre-

sents time. This diagram can display an execution
pattern of processes for a certain period of time. It,
however, has little information about each process
at one time.

e Animation approach

Processes are placed in two-dimensional space to
represent their relations. Then, the state of each
process or communication between them are dis-
played from time to time. This diagram can dis-
play more information about each processes at one
time. We, however, cannot obtain a global view of
the execution pattern of the whole system.

Then, he concluded that an ideal debugger for parallel
systems should have an ability to display both of them.

Software Probe is Dangerous

To display such a process-time diagram or an anima-
tion, it is necessary to obtain information about each
process and communication between them. Using this
information, the visualization system makes a real time
animation or replays them later.

In case of sequential programs, to make such visualiza-
tions is relatively easier. For example, algorithm anima-
tion systems established by Brown[1] and Stasko[13] dis-
play the execution of the program or algorithms by in-
serting additional procedures called software probes just
before or after the interesting events[1].

We, however, have to be very careful to apply such tech-
niques to parallel programs. The reasons are as follows:

e Lack of a global clock
Parallel processes run on two or more computers
(processors). Since each computer has its own
clock, there is no standard time which should be
used to obtain the animation or the process-time
diagram.

o Probe effect
Probe effect is one of main concerns in discussion
of parallel systems. If we put additional procedures
into parallel programs to monitor the system some
information or to get visualization, the system’s be-
havior might be completely different between before
and after the insertion.

Moreover, the software probe approach requires pro-
grammers to insert/delete additional procedures at the
corresponding point. Once the bug is found, these pro-
cedures have to be deleted. However, if another bug
is found, programmers have to insert them again and
also delete again after debugging. Most of the program-
mers have the similar experience to insert/delete lots
of output sentences (such as “printf”) into/from their
programs when they debug their programs.

VISUALINDA

On the basis of analysis described in the previous sec-
tion, we developed the VisuaLinda which is a Linda
server as well as a visualization system for parallel Linda
programs.

Linda

Linda[3], proposed by Carriero and Gelernter, is a con-
cept of parallel programming rather than a parallel pro-
gramming language itself. By adding a couple of prim-
itive procedures for interprocess communication to ex-
isting sequential programming languages such as C or
FORTRAN, these languages are extended to parallel
programming languages.

To do interprocess communication, Linda has a shared
space and primitive procedures to access the shared
space. The shared space is called tuple space and is used
to send/receive data called tuple. There are a couple of
primitive procedures for communication?.

out Output a tuple to the tuple space.

in Input a tuple from the tuple space. The tuple is
deleted from the tuple space.

rd Read a tuple from the tuple space. The tuple is not
deleted from the tuple space.

Interprocess communication using tuples and a tuple
space is illustrated in Figure 1.

out

in 2
(CB400, $5400) (2400, $4800)

-fl

Tuple Space
(Z400, $4800) removed from tuple space
(CB400, $5400) remainsin tuple space

-

*rd out
(CB400, $5400)

(2400, $4800)
-~ Y,

Figure 1: Interprocess communication using tuples in

Linda.

1Eval has not yet implemented in the VisualLinda.

Linda Program

out H in H rd
pure" Linda server

S~

(Visualizer

\VisuaLinda)

Figure 2: VisuaLinda System Overview

Built-in Visualization Module

As is described above, all communications are done
through the tuple space maintained by the Linda server.
We focused on this and decided to embed a visualiza-
tion module in the server. When the server receives a
request from a client, the server hands it over to the vi-
sualization module with a time when the server started
to process the request as shown in Figure 2.

By adopting this built-in visualization module approach,
the problems described in the previous section are min-
imized as follows:

e global clock;
Although clients run in parallel, the server pro-
cesses requests from the clients sequentially. There-
fore, the time which the request is processed can be
regarded as a standard time. We can use this to
make an animation or to draw a process-time dia-
gram.

e probe effect;
From the programmer’s point of view, the Visu-
alinda is a Linda server itself. And client programs
are not affected whether or not the server makes
visualization. Since no additional procedure is in-
serted to the client programs, the probe effect is
minimized with the Visualinda.

e no change to client program;
At the same time, programmers do not need to
insert/delete any procedures into/from their client
programs. Programmers can concentrate their at-
tention on writing their programs. Visualization is
automatically obtained whether or not they want.

Process-Processor Diagram Process-Time Diagram

Process
I\

T \
2 \
C

Processor 1 Processor

Process
/

- ® Q O T @

Figure 3: Three-dimensional framework for visualizing
parallel programs. Processes are laid out in XY-plane,
and Z-axis indicates time. Therefore, process relation
diagram and process-time diagram, which are repre-
sented as two separated diagrams, are visualized in one

3D diagram.

(If they do not want to see the visualization, they
may iconify the VisuaLinda window.)

3D Framework

In [6], Koike proposed a framework for visualizing mas-
sively parallel processes. In this framework, processes
are laid out in XY-plane, and Z-axis indicates time as
shown in Figure 3. Therefore, a process relation dia-
gram and a process-time diagram, which are normally
drawn in separated diagrams, are visualized in one 3D
diagram. It is noteworthy that two approaches, process-
time diagram and animation, which McDowell listed as
requirements for ideal debugger, are satisfied with this
one 3D diagram.

The main features of this framework are:

e ability to display large amounts of processes;
We can use 2D space to lay out processes instead
of 1D.

¢ simultaneous understanding of a process relation
and a time flow;
It will reduce human’s cognitive load. Detailed dis-
cussions are described in [6]

e improvements of visibility of communication lines;
Communication lines are generally not crossing in
3D space. By changing viewpoints, users can get a
good position to see the diagram.

o integration of detailed information of processes and
overview of the graph;
As ParspectiveWall[9] demonstrated, perspective
view of 3D graphics allows us to see both details
(process’s state, name, etc.) and global context
(overview of the graph).

Implementation

The VisuaLinda was implemented on Silicon Graphics
IRIS Indigo/XS with C++(GNU C++) and 3D software
visualization tool VOGUE[6]. Figure 4 is an example
visualization of a Linda program with six clients. A
server process is placed at the top of X'Y-plane and client
processes are placed under the server. Z-axis indicates
time. In the figure, a sphere represents an existence of
a client process. As it runs, the “bar” grows along the
time axis. The bar is displayed in transparent when the
process is waiting a tuple, and otherwise it is displayed
in solid. Moreover, large transparent polygons represent
workstations. In this example, four workstations are
used.

Currently, the following functions are implemented in
VisuaLinda.

e changing viewpoint
By using GUI sliders or keyboard, it is possible to
change the 3D viewpoint with animation.

¢ displaying each tuple
By clicking a communication line, corresponding
tuple data is displayed (as shown in Figure 4).

¢ displaying tuple space
By clicking a certain point of server process, all
tuples in the tuple space at that time are displayed.

o displaying state of each process
The process waiting for a tuple is displayed in trans-
parent. Otherwise it is displayed in no transparent.

o displaying hostname
By clicking a sphere representing a process, host
name of the computer in which the process is run-
ning is displayed.

VISUALINDA IN PRACTICAL USE
This section describes how the Visualinda is used for
such applications.

Displaying a Large Number of Processes

First, we start to compare the VisuaLinda’s 3D frame-
work and traditional 2D framework. We visualized
Linda programs with 14 clients. The results are shown
in Figure 5 and Figure 6. As you can see, the vertical
axis overflows in the 2D diagram and communication
lines reduces the visibility of the diagram. On the other

hand, the 3D framework has much more space to dis-
play processes, and we can understand communication
between processes more clearly.

Used in Debugging

It is possible to classify bugs of parallel programs into
two categories, one is of each program and another is
of communication. Debugging techniques for sequential
programs are useful for the former but not for the latter.

Figure 7 are visualizations of the programs with bug (A)
and without bug (B). In the (A), processe A is ended in
transparent without a cube which represents the end of
its execution. Thus, programmers can understand that
this process is waiting (forever!) for tuples and that pro-
cess B should output more tuples to tuple space. Figure
7 (B) shows the result after the programmer correct this
bug.

This seems to be a tiny example. But this example
shows us the difficulty of finding such bug. Such bugs
are never found with a debugging tool for sequential
programs. With the VisuaLinda, programmers can find
the bug just by seeing the visualization.

It is important to notice that this bug might not be
occurred if the access order to a tuple space is different.
Consider two processes, one of which wants to input a
tuple with in and another wants to read in the tuple
with rd. If the former access to the tuple space earlier,
the latter can also read in the tuple because the tuple
is kept existing in the tuple space. On the other hand,
if the latter access earlier, the former will be blocked as
shown in Figure 7. If we put software probes in order to
obtain visualization, the access order might change and
therefore the bug might not be occurred.

Used in Performance Tuning

A primary motivation for using parallel programs is the
increase in computational speed as compared to using
only sequential programs. However, if the design of par-
allel programs is not correct, the increase in speed may
not meet expectations. On the contrary, it might be
slower because of the overhead of communication. In
Linda, each process is allotted to computers. The pro-
cesses allotted to the same computer run in concurrent,
not in parallel. Therefore, the process which has heavy
computation should be assigned to the faster computer.
The light processes may be assigned to the slowest com-
puters or some of them may be assigned to the same
computer.

Figure 8 represents an example of the performance tun-
ing. In figure 8 (A), programmers recognize that many
parts of clients are transparent. This is because pro-
cesses are always waiting for tuples. Figure 8 (B) is the
visualization after improving the programs. There are

artus L ingd

host and Executable filenamg;

Tupledata's infomation

Figure 4: An example visualization of Linda program with the VisuaLinda. A server process is placed at the top of
XY-plane and client processes are placed under the server. The “bar” grows along the time axis as each process runs.
Large transparent polygons represent workstations in which the processes are running.

less transparent parts. It means that computation is
done more effectively.

With the Visualinda, programmers can easily know
which process reduces the performance of the whole sys-
tem. Then, they can redesign the program and separate
this process to some processes, or they just reassign this
heavy process to a faster computer.

DISCUSSION

Limitations of VisualLinda

There are some limitations in the Visualinda frame-
work. The first is a computational efficiency problem.
Since the Visualinda has to do additional work for visu-
alization as is compared to the pure Linda server, which
does not have visualization capability, the VisuaLinda
is relatively slower than the pure Linda server.

Second, our framework is not applied as it is to the
multiple server Linda, which is currently being stud-
ied in Linda community. Since there are two or more
servers, there are the same number of standard times
as the number of servers. Therefore, VisualLinda would
need to be extended to multiple timelines for multuple
servers.

Related Work

ParVis[8] is a visualization system for MultiLisp, and
displays its parallel processes in 2D process-time dia-
gram. PIE[7] is a visualization system for Mach op-
erating system and is used for performance tuning of
the system’s kernel. JED[10] is a visualization system
for parallel programs running on Cedar multi processor
environment. These work use 2D process-time diagram.
Therefore, they cannot display much more processes nor
represent a process-processor relation as the VisuaLinda
can.

As three-dimensional visualization work was done by
SemNet[5] and Information Visualizer[2, 12, 9]. These
systems can display only one relation at a time. Al-
though users change their viewpoints, the obtained in-
formation is the same. For example, Cone Tree[12]
shows one hierarchical structure whichever viewpoints
users choose. On the other hand, our 3D framework
makes it possible to display two different relations with-
out disturbing each other.

We first applied this 3D framework to parallel processes
of control software at Tokyo Electric Power Company|[6]
and also experimented virtual reality interfaces[4]. How-
ever, it depends on the special hardware and debugging
tools for it. Therefore, we want to apply our frame-
work to more general parallel computing and to show

Figure 5: The 3D visualization obtained by the Visualinda. There is enough space to lay out processes, and it is
easier to recognize communication between processes.

Figure 6: The 2D process-time diagram simulated by the VisuaLinda. The Y axis overflows with just 14 processes.

. Process B

Contents of Tuplespace

Contents of Tupledata ; .Llndaserver

Host and Executable filename

uecrb.qr.cas.uec.ac. jp!/easybug!

(B)

Figure 7: Using the VisuaLinda for debugging. The (A) is a visualization of the program with bug. Since a tuple
required by process (A) is not in the tuple space, the process A is blocked. The (B) is a visualization after fixing this
bug.

-~

(B)

Figure 8: Using the VisuaLinda for performance tuning. The (A) is a visualization of the program coded unefficiently.
The programmers recognized its unefficiency because there are many transparency parts in this visualization. On the
other hand, the (B) is a visualization of the program coded efficiently. There are less transparency polygons.

its effectiveness.

CONCLUSIONS
This paper describes the VisuaLinda which is a Linda
server itself as well as a visualization system for parallel
Linda programs.

¢ Built-in design of the visualization module mini-
mize the probe effect which is a main concern of
monitoring parallel systems;

o Client programs do not need to be changed to
obtain visualization. This extremely reduces pro-
grammers’ work;

e VisualLinda’s 3D framework solves some of the lim-
itation in 2D process-time diagram.

ACKNOWLEDGMENTS

The authors would like to thank Toshiyuki Masui of
SHARP Corporation, who generously developed and
provide us with a pure Linda server.

REFERENCES
[1] BrowN, M. H. Algorithm Animation. MIT Press,
Cambridge, MA, 1988.

[2] CARD, S. K., ROBERTSON, G. G., AND MACKIN-
LAY, J. D. The Information Visualizer, an informa-
tion workspace. In Proceedings of the ACM Con-
ference on Human Factors in Computing Systems
(CHI’91) (1991), ACM Press, pp. 181-188.

[3] CarRRIERO, N., AND GELERNTER, D. Linda in
context. Communications of the ACM 32, 4 (1989),
444-458.

[4] ET.AL., H. A virtual reality application for
software visualization. In Proceedings of IEEE
VRAIS’93 (1993).

[5] FaircHILD, K. M., PoLTROCK, S. E., AND FUR-
NAS, G. W. SemNet: Three-dimensional graphic
representation of large knowledge bases. In Cog-
nitwe Science And Its Applications For Human-
Computer Interaction, R. Guindon, Ed. Lawrence
Erlbaum Associates, 1988, pp. 201-233.

[6] KoikE, H. The role of another spatial dimension
in software visualization. ACM Trans. on Informa-
tion Systems 11, 3 (July 1993), 266—-286.

[7] LEHR, T., SEGALL, Z., VRsaLovic, D. F., Ca-
PLAN, E., CHUNG, A. L., AND FInEMAN, C. E.
Visualizing performance debugging. IEEE Com-
puter (1989).

[8] LiNDEN, L. B. Parallel program visualization us-
ing ParVis. In Performance Instrumentation and
Visualization, M. Simmons and R. Koskela, Eds.
ACM Press, 1990, pp. 157-188.

[9] MackINLAY, J. D., RoBERTSON, G. G., AND
CarD, S. K. The perspective wall: detail and
context smoothly integrated. In Proceedings of the
ACM Conference on Human Factors in Computing
Systems (CHI'91) (1991), ACM Press, pp. 173 179.

[10] MaroNYy, A. D. JED: Just an event display.
In Performance Instrumentation and Visualization,
M. Simmons and R. Koskela, Eds. ACM Press,
1990, pp. 99-116.

[11] McDoweLL, C. E., aND HELMBOLD, D. P. De-
bugging concurrent programs. ACM Computing
Surveys 21, 4 (1989).

[12] RoBERTSON, G. G., MACKINLAY, J. D., AND
CArD, S. K. Cone Trees: Animated 3D visu-
alizations of hierarchical information. In Proceed-
ings of the ACM Conference on Human Factors in
Computing Systems (CHI'91) (1991), ACM Press,
pp- 189 194.

[13] STasko, J. T. TANGO: A framework and system
for algorithm animation. Computer 23, 9 (Septem-

ber 1990), 27-39.

